Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Viruses ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: covidwho-20244237

ABSTRACT

Evolutionary and functional studies suggested that the emergence of the Omicron variants can be determined by multiple fitness trade-offs including the immune escape, binding affinity for ACE2, conformational plasticity, protein stability and allosteric modulation. In this study, we systematically characterize conformational dynamics, structural stability and binding affinities of the SARS-CoV-2 Spike Omicron complexes with the host receptor ACE2 for BA.2, BA.2.75, XBB.1 and XBB.1.5 variants. We combined multiscale molecular simulations and dynamic analysis of allosteric interactions together with the ensemble-based mutational scanning of the protein residues and network modeling of epistatic interactions. This multifaceted computational study characterized molecular mechanisms and identified energetic hotspots that can mediate the predicted increased stability and the enhanced binding affinity of the BA.2.75 and XBB.1.5 complexes. The results suggested a mechanism driven by the stability hotspots and a spatially localized group of the Omicron binding affinity centers, while allowing for functionally beneficial neutral Omicron mutations in other binding interface positions. A network-based community model for the analysis of epistatic contributions in the Omicron complexes is proposed revealing the key role of the binding hotspots R498 and Y501 in mediating community-based epistatic couplings with other Omicron sites and allowing for compensatory dynamics and binding energetic changes. The results also showed that mutations in the convergent evolutionary hotspot F486 can modulate not only local interactions but also rewire the global network of local communities in this region allowing the F486P mutation to restore both the stability and binding affinity of the XBB.1.5 variant which may explain the growth advantages over the XBB.1 variant. The results of this study are consistent with a broad range of functional studies rationalizing functional roles of the Omicron mutation sites that form a coordinated network of hotspots enabling a balance of multiple fitness tradeoffs and shaping up a complex functional landscape of virus transmissibility.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Protein Stability , Mutation , Spike Glycoprotein, Coronavirus/genetics , Protein Binding
2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2320161

ABSTRACT

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric regulation, the emerging structural biology technologies and AI approaches remains largely unexplored, calling for the development of AI-augmented integrative structural biology. In this review, we focus on the latest remarkable progress in deep high-throughput mining and comprehensive mapping of allosteric protein landscapes and allosteric regulatory mechanisms as well as on the new developments in AI methods for prediction and characterization of allosteric binding sites on the proteome level. We also discuss new AI-augmented structural biology approaches that expand our knowledge of the universe of protein dynamics and allostery. We conclude with an outlook and highlight the importance of developing an open science infrastructure for machine learning studies of allosteric regulation and validation of computational approaches using integrative studies of allosteric mechanisms. The development of community-accessible tools that uniquely leverage the existing experimental and simulation knowledgebase to enable interrogation of the allosteric functions can provide a much-needed boost to further innovation and integration of experimental and computational technologies empowered by booming AI field.


Subject(s)
Artificial Intelligence , Deep Learning , Allosteric Site , Big Data , Proteins/chemistry
3.
Int J Mol Sci ; 24(7)2023 Apr 02.
Article in English | MEDLINE | ID: covidwho-2305250

ABSTRACT

Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable among these variants. A systematic mutational scanning of the inter-protomer interfaces in the spike trimers revealed a group of conserved structural stability hotspots that play a key role in the modulation of functional dynamics and are also involved in the inter-protomer couplings through local contacts and interaction networks with the Omicron mutational sites. The results of mutational scanning provided evidence that BA.2.75 trimers are more stable than BA.2 and comparable in stability to the BA.1 variant. Using dynamic network modeling of the S Omicron BA.1, BA.2, and BA.2.75 trimers, we showed that the key network mediators of allosteric interactions are associated with the major stability hotspots that are interconnected along potential communication pathways. The network analysis of the BA.1, BA.2, and BA.2.75 trimers suggested that the increased thermodynamic stability of the BA.2.75 variant may be linked with the organization and modularity of the residue interaction network that allows for allosteric communications between structural stability hotspots and Omicron mutational sites. This study provided a plausible rationale for a mechanism in which Omicron mutations may evolve by targeting vulnerable sites of conformational adaptability to elicit immune escape while maintaining their control on balancing protein stability and functional fitness through robust allosteric communications with the stability hotspots.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Subunits , Protein Stability , Mutation
4.
J Biomol Struct Dyn ; : 1-18, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-2285448

ABSTRACT

In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike engine. By combining functional dynamics analysis and ensemble-based alanine scanning of the SARS-CoV-2 spike proteins we found that the D614G mutation can improve stability of the spike protein in both closed and open forms, but shifting thermodynamic preferences towards the open mutant form. Our results revealed that the D614G mutation can promote the increased number of stable communities and allosteric hub centers in the open form by reorganizing and enhancing the stability of the S1-S2 inter-domain interactions and restricting mobility of the S1 regions. This study provides atomistic-based view of allosteric communications in the SARS-CoV-2 spike proteins, suggesting that the D614G mutation can exert its primary effect through allosterically induced changes on stability and communications in the residue interaction networks.Communicated by Ramaswamy H. Sarma.

5.
Trends Biochem Sci ; 48(4): 375-390, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287178

ABSTRACT

The fundamental biological importance and complexity of allosterically regulated proteins stem from their central role in signal transduction and cellular processes. Recently, machine-learning approaches have been developed and actively deployed to facilitate theoretical and experimental studies of protein dynamics and allosteric mechanisms. In this review, we survey recent developments in applications of machine-learning methods for studies of allosteric mechanisms, prediction of allosteric effects and allostery-related physicochemical properties, and allosteric protein engineering. We also review the applications of machine-learning strategies for characterization of allosteric mechanisms and drug design targeting SARS-CoV-2. Continuous development and task-specific adaptation of machine-learning methods for protein allosteric mechanisms will have an increasingly important role in bridging a wide spectrum of data-intensive experimental and theoretical technologies.


Subject(s)
COVID-19 , Humans , Allosteric Site , Allosteric Regulation , SARS-CoV-2/metabolism , Proteins/chemistry , Machine Learning
6.
J Chem Inf Model ; 63(5): 1413-1428, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2248155

ABSTRACT

Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Molecular Dynamics Simulation , SARS-CoV-2/metabolism , Proteins/chemistry , Allosteric Regulation
7.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2066130

ABSTRACT

In this study, we performed all-atom MD simulations of RBD-ACE2 complexes for BA.1, BA.1.1, BA.2, and BA.3 Omicron subvariants, conducted a systematic mutational scanning of the RBD-ACE2 binding interfaces and analysis of electrostatic effects. The binding free energy computations of the Omicron RBD-ACE2 complexes and comprehensive examination of the electrostatic interactions quantify the driving forces of binding and provide new insights into energetic mechanisms underlying evolutionary differences between Omicron variants. A systematic mutational scanning of the RBD residues determines the protein stability centers and binding energy hotpots in the Omicron RBD-ACE2 complexes. By employing the ensemble-based global network analysis, we propose a community-based topological model of the Omicron RBD interactions that characterized functional roles of the Omicron mutational sites in mediating non-additive epistatic effects of mutations. Our findings suggest that non-additive contributions to the binding affinity may be mediated by R493, Y498, and Y501 sites and are greater for the Omicron BA.1.1 and BA.2 complexes that display the strongest ACE2 binding affinity among the Omicron subvariants. A network-centric adaptation model of the reversed allosteric communication is unveiled in this study, which established a robust connection between allosteric network hotspots and potential allosteric binding pockets. Using this approach, we demonstrated that mediating centers of long-range interactions could anchor the experimentally validated allosteric binding pockets. Through an array of complementary approaches and proposed models, this comprehensive and multi-faceted computational study revealed and quantified multiple functional roles of the key Omicron mutational site R493, R498, and Y501 acting as binding energy hotspots, drivers of electrostatic interactions as well as mediators of epistatic effects and long-range communications with the allosteric pockets.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , Humans , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
Phys Chem Chem Phys ; 24(29): 17723-17743, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1947641

ABSTRACT

Dissecting the regulatory principles underlying function and activity of the SARS-CoV-2 spike protein at the atomic level is of paramount importance for understanding the mechanisms of virus transmissibility and immune escape. In this work, we introduce a hierarchical computational approach for atomistic modeling of allosteric mechanisms in the SARS-CoV-2 Omicron spike proteins and present evidence of a frustration-based allostery as an important energetic driver of the conformational changes and spike activation. By examining conformational landscapes and the residue interaction networks in the SARS-CoV-2 Omicron spike protein structures, we have shown that the Omicron mutational sites are dynamically coupled and form a central engine of the allosterically regulated spike machinery that regulates the balance and tradeoffs between conformational plasticity, protein stability, and functional adaptability. We have found that the Omicron mutational sites at the inter-protomer regions form regulatory hotspot clusters that control functional transitions between the closed and open states. Through perturbation-based modeling of allosteric interaction networks and diffusion analysis of communications in the closed and open spike states, we have quantified the allosterically regulated activation mechanism and uncover specific regulatory roles of the Omicron mutations. Atomistic reconstruction of allosteric communication pathways and kinetic modeling using Markov transient analysis reveal that the Omicron mutations form the inter-protomer electrostatic bridges that operate as a network of coupled regulatory switches that could control global conformational changes and signal transmission in the spike protein. The results of this study have revealed distinct and yet complementary roles of the Omicron mutation sites as a network of hotspots that enable allosteric modulation of structural stability and conformational changes which are central for spike activation and virus transmissibility.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Allosteric Regulation , Humans , Molecular Dynamics Simulation , Mutation , Protein Conformation , Protein Stability , Protein Subunits , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
Biomolecules ; 12(7)2022 07 10.
Article in English | MEDLINE | ID: covidwho-1928473

ABSTRACT

In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19/genetics , Humans , Molecular Conformation , Mutation , Protein Binding , Protein Stability , SARS-CoV-2/genetics
10.
ACS Omega ; 7(20): 17024-17042, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1860284

ABSTRACT

At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection stage, is missing. In this work, we present a multifaceted computational approach strongly grounded on a biophysical modeling of biological systems, so to disclose the interaction of the SARS-CoV2 spike protein with ACE2 with a special focus to an allosteric regulation of the spike-ACE2 interaction. Our approach includes the following methodologies: Protein Contact Networks and Network Clustering, Targeted Molecular Dynamics, Elastic Network Modeling, Perturbation Response Scanning, and a computational analysis of energy flow and SEPAS as a protein-softness and monomer-based affinity predictor. We applied this approach to free (closed and open) states of spike protein and spike-ACE2 complexes. Eventually, we analyzed the interactions of free and bound forms of spike with hepcidin (HPC), the major hormone in iron regulation, recently addressed as a central player in the COVID19 pathogenesis, with a special emphasis to the most severe outcomes. Our results demonstrate that, compared with closed and open states, the spike protein in the ACE2-bound state shows higher allosteric potential. The correspondence between hinge sites and the Allosteric Modulation Region (AMR) in the S-ACE complex suggests a molecular basis for hepcidin involvement in COVID19 pathogenesis. We verify the importance of AMR in different states of spike and then study its interactions with HPC and the consequence of the HPC-AMR interaction on spike dynamics and its affinity for ACE2. We propose two complementary mechanisms for HPC effects on spike of SARS-CoV-2; (a) HPC acts as a competitive inhibitor when spike is in a preinfection state (open and with no ACE2), (b) the HPC-AMR interaction pushes the spike structure into the safer closed state. These findings need clear molecular in vivo verification beside clinical observations.

11.
Int J Mol Sci ; 23(8)2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1792660

ABSTRACT

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and community analyses, we characterize the global mediating centers in the complexes and the nature of local stabilizing communities. We show that a constellation of mutational sites (G496S, Q498R, N501Y and Y505H) correspond to key binding energy hotspots and also contribute decisively to the key interfacial communities that mediate allosteric communications between S-RBD and ACE2. These Omicron mutations are responsible for both favorable local binding interactions and long-range allosteric interactions, providing key functional centers that mediate the high transmissibility of the virus. At the same time, our results show that other mutational sites could provide a "flexible shield" surrounding the stable community network, thereby allowing the Omicron virus to modulate immune evasion at different epitopes, while protecting the integrity of binding and allosteric interactions in the RBD-ACE2 complexes. This study suggests that the SARS-CoV-2 S protein may exploit the plasticity of the RBD to generate escape mutants, while engaging a small group of functional hotspots to mediate efficient local binding interactions and long-range allosteric communications with ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Humans , Molecular Dynamics Simulation , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
12.
J Chem Inf Model ; 62(8): 1956-1978, 2022 04 25.
Article in English | MEDLINE | ID: covidwho-1773912

ABSTRACT

The structural and functional studies of the SARS-CoV-2 spike protein variants revealed an important role of the D614G mutation that is shared across many variants of concern (VOCs), suggesting the effect of this mutation on the enhanced virus infectivity and transmissibility. The recent structural and biophysical studies provided important evidence about multiple conformational substates of the D614G spike protein. The development of a plausible mechanistic model that can explain the experimental observations from a more unified thermodynamic perspective is an important objective of the current work. In this study, we employed efficient and accurate coarse-grained simulations of multiple structural substates of the D614G spike trimers together with the ensemble-based mutational frustration analysis to characterize the dynamics signatures of the conformational landscapes. By combining the local frustration profiling of the conformational states with residue-based mutational scanning of protein stability and network analysis of allosteric interactions and communications, we determine the patterns of mutational sensitivity in the functional regions and sites of variants. We found that the D614G mutation may induce a considerable conformational adaptability of the open states in the SARS-CoV-2 spike protein without compromising the folding stability and integrity of the spike protein. The results suggest that the D614G mutant may employ a hinge-shift mechanism in which the dynamic couplings between the site of mutation and the interprotomer hinge modulate the interdomain interactions, global mobility change, and the increased stability of the open form. This study proposes that mutation-induced modulation of the conformational flexibility and energetic frustration at the interprotomer interfaces may serve as an efficient mechanism for allosteric regulation of the SARS-CoV-2 spike proteins.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Mutation , Protein Stability , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1732071

ABSTRACT

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural and computational studies have also been instrumental in quantifying the structure, dynamics, and energetics of the SARS-CoV-2 spike protein binding with nanobodies. In this review, a comprehensive analysis of the current structural, biophysical, and computational biology investigations of SARS-CoV-2 S proteins and their complexes with distinct classes of nanobodies targeting different binding sites is presented. The analysis of computational studies is supplemented by an in-depth examination of mutational scanning simulations and identification of binding energy hotspots for distinct nanobody classes. The review is focused on the analysis of mechanisms underlying synergistic binding of multivalent nanobodies that can be superior to single nanobodies and conventional nanobody cocktails in combating escape mutations by effectively leveraging binding avidity and allosteric cooperativity. We discuss how structural insights and protein engineering approaches together with computational biology tools can aid in the rational design of synergistic combinations that exhibit superior binding and neutralization characteristics owing to avidity-mediated mechanisms.


Subject(s)
Binding Sites , Molecular Docking Simulation , Molecular Dynamics Simulation , Single-Domain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acids , Antibody Affinity , Epitopes/chemistry , Epitopes/metabolism , Humans , Multiprotein Complexes/chemistry , Mutagenesis , Protein Binding , Protein Engineering , Protein Interaction Domains and Motifs , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
14.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1700048

ABSTRACT

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.


Subject(s)
SARS-CoV-2/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Allosteric Regulation , Cryoelectron Microscopy , Molecular Conformation , Molecular Dynamics Simulation , Protein Stability , Spike Glycoprotein, Coronavirus/genetics
15.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667196

ABSTRACT

Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize conformational dynamics of the SARS-CoV-2 spike proteins and identify dynamic signatures of the functional regions that regulate transitions between the closed and open forms. By combining molecular simulations with full atomistic reconstruction of the trajectories and the ensemble-based mutational frustration analysis, we characterized how the intrinsic flexibility of specific spike regions can control functional conformational changes required for binding with the host-cell receptor. Using the residue-based mutational scanning of protein stability, we determined protein stability hotspots and identified potential energetic drivers favoring the receptor-accessible open spike states for the B.1.1.7 and B.1.351 spike variants. The results suggested that modulation of the energetic frustration at the inter-protomer interfaces can serve as a mechanism for allosteric couplings between mutational sites and the inter-protomer hinges of functional motions. The proposed mechanism of mutation-induced energetic frustration may result in greater adaptability and the emergence of multiple conformational states in the open form. This study suggested that SARS-CoV-2 B.1.1.7 and B.1.351 variants may leverage the intrinsic plasticity of functional regions in the spike protein for mutation-induced modulation of protein dynamics and allosteric regulation to control binding with the host cell receptor.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Allosteric Regulation , Binding Sites , COVID-19/pathology , Humans , Molecular Conformation , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Stability , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
16.
ACS Omega ; 6(40): 26354-26371, 2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1475254

ABSTRACT

Structure-functional studies have recently revealed a spectrum of diverse high-affinity nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this study, we combine atomistic simulations with the ensemble-based mutational profiling of binding for the SARS-CoV-2 S-RBD complexes with a wide range of nanobodies to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations. Using an in silico mutational profiling approach for probing the protein stability and binding, we examine dynamics and energetics of the SARS-CoV-2 complexes with single nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E + U, a biparatopic nanobody VHH VE, and a combination of the CC12.3 antibody and VHH V/W nanobodies. This study characterizes the binding energy hotspots in the SARS-CoV-2 protein and complexes with nanobodies providing a quantitative analysis of the effects of circulating variants and escaping mutations on binding that is consistent with a broad range of biochemical experiments. The results suggest that mutational escape may be controlled through structurally adaptable binding hotspots in the receptor-accessible binding epitope that are dynamically coupled to the stability centers in the distant binding epitope targeted by VHH U/V/W nanobodies. This study offers a plausible mechanism in which through cooperative dynamic changes, nanobody combinations and biparatopic nanobodies can elicit the increased binding affinity response and yield resilience to common escape mutants.

17.
J Chem Inf Model ; 61(10): 5172-5191, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-1434056

ABSTRACT

We developed a computational framework for comprehensive and rapid mutational scanning of binding energetics and residue interaction networks in the SARS-CoV-2 spike protein complexes. Using this approach, we integrated atomistic simulations and conformational landscaping of the SARS-CoV-2 spike protein complexes with ensemble-based mutational screening and network modeling to characterize mechanisms of structure-functional mimicry and resilience toward mutational escape by the ACE2 protein decoy and de novo designed miniprotein inhibitors. A detailed analysis of structural plasticity of the SARS-CoV-2 spike proteins obtained from atomistic simulations of conformational landscapes and sequence-based profiling of the disorder propensities revealed the intrinsically flexible regions that harbor key functional sites targeted by circulating variants. The conservation of collective dynamics in the SARS-CoV-2 spike protein complexes showed that mutational escape positions are important for modulation of functional motions and that mutational changes in these sites can alter allosteric interaction networks. Through mutational profiling of binding and allosteric propensities in the SARS-CoV-2 spike protein complexes, we identified the key binding and regulatory hotspots that collectively determine functional response and resilience of miniproteins to mutational variants. The results suggest that binding affinities and allosteric signatures of the SARS-CoV-2 complexes can be determined by dynamic crosstalk between structurally stable regulatory centers and conformationally adaptable allosteric hotspots that collectively control the resilience toward mutational escape. This may underlie a mechanism in which moderate perturbations in the mutational escape positions can induce global allosteric changes and alter functional protein response by modulating signaling in the residue interaction networks.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
J Phys Chem B ; 125(18): 4596-4619, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1387112

ABSTRACT

Structural and biochemical studies of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoproteins and complexes with highly potent antibodies have revealed multiple conformation-dependent epitopes highlighting conformational plasticity of spike proteins and capacity for eliciting specific binding and broad neutralization responses. In this study, we used coevolutionary analysis, molecular simulations, and perturbation-based hierarchical network modeling of the SARS-CoV-2 spike protein complexes with a panel of antibodies targeting distinct epitopes to explore molecular mechanisms underlying binding-induced modulation of dynamics and allosteric signaling in the spike proteins. Through coevolutionary analysis of the SARS-CoV-2 spike proteins, we identified highly coevolving hotspots and functional clusters that enable a functional cross-talk between distant allosteric regions in the SARS-CoV-2 spike complexes with antibodies. Coarse-grained and all-atom molecular dynamics simulations combined with mutational sensitivity mapping and perturbation-based profiling of the SARS-CoV-2 receptor-binding domain (RBD) complexes with CR3022 and CB6 antibodies enabled a detailed validation of the proposed approach and an extensive quantitative comparison with the experimental structural and deep mutagenesis scanning data. By combining in silico mutational scanning, perturbation-based modeling, and network analysis of the SARS-CoV-2 spike trimer complexes with H014, S309, S2M11, and S2E12 antibodies, we demonstrated that antibodies can incur specific and functionally relevant changes by modulating allosteric propensities and collective dynamics of the SARS-CoV-2 spike proteins. The results provide a novel insight into regulatory mechanisms of SARS-CoV-2 S proteins showing that antibody-escaping mutations can preferentially target structurally adaptable energy hotspots and allosteric effector centers that control functional movements and allosteric communication in the complexes.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
19.
J Phys Chem B ; 125(3): 850-873, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1387111

ABSTRACT

The rapidly growing body of structural and biochemical studies of the SARS-CoV-2 spike glycoprotein has revealed a variety of distinct functional states with radically different arrangements of the receptor-binding domain, highlighting a remarkable function-driven conformational plasticity and adaptability of the spike proteins. In this study, we examined molecular mechanisms underlying conformational and dynamic changes in the SARS-CoV-2 spike mutant trimers through the lens of dynamic analysis of allosteric interaction networks and atomistic modeling of signal transmission. Using an integrated approach that combined coarse-grained molecular simulations, protein stability analysis, and perturbation-based modeling of residue interaction networks, we examined how mutations in the regulatory regions of the SARS-CoV-2 spike protein can differentially affect dynamics and allosteric signaling in distinct functional states. The results of this study revealed key functional regions and regulatory centers that govern collective dynamics, allosteric interactions, and control signal transmission in the SARS-CoV-2 spike proteins. We found that the experimentally confirmed regulatory hotspots that dictate dynamic switching between conformational states of the SARS-CoV-2 spike protein correspond to the key hinge sites and global mediating centers of the allosteric interaction networks. The results of this study provide a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 spike proteins showing that mutations at the key regulatory positions can differentially modulate distribution of states and determine topography of signal communication pathways operating through state-specific cascades of control switch points. This analysis provides a plausible strategy for allosteric probing of the conformational equilibrium and therapeutic intervention by targeting specific hotspots of allosteric interactions and communications in the SARS-CoV-2 spike proteins.


Subject(s)
Models, Biological , Mutation , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Allosteric Regulation , Binding Sites , Cysteine/genetics , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Stability , Protein Subunits , SARS-CoV-2/genetics , Signal Transduction/genetics , Spike Glycoprotein, Coronavirus/genetics
20.
ACS Omega ; 6(24): 16216-16233, 2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1284680

ABSTRACT

We developed and applied a computational approach to simulate functional effects of the global circulating mutation D614G of the SARS-CoV-2 spike protein. All-atom molecular dynamics simulations are combined with deep mutational scanning and analysis of the residue interaction networks to investigate conformational landscapes and energetics of the SARS-CoV-2 spike proteins in different functional states of the D614G mutant. The results of conformational dynamics and analysis of collective motions demonstrated that the D614 site plays a key regulatory role in governing functional transitions between open and closed states. Using mutational scanning and sensitivity analysis of protein residues, we identified the stability hotspots in the SARS-CoV-2 spike structures of the mutant trimers. The results suggest that the D614G mutation can induce the increased stability of the open form acting as a driver of conformational changes, which may result in the increased exposure to the host receptor and promote infectivity of the virus. The network community analysis of the SARS-CoV-2 spike proteins showed that the D614G mutation can enhance long-range couplings between domains and strengthen the interdomain interactions in the open form, supporting the reduced shedding mechanism. This study provides the landscape-based perspective and atomistic view of the allosteric interactions and stability hotspots in the SARS-CoV-2 spike proteins, offering a useful insight into the molecular mechanisms underpinning functional effects of the global circulating mutations.

SELECTION OF CITATIONS
SEARCH DETAIL